Generalized Jordan left derivations in rings with involution
نویسندگان
چکیده
منابع مشابه
Lahcen Oukhtite GENERALIZED JORDAN LEFT DERIVATIONS IN RINGS WITH INVOLUTION
In the present paper we study generalized left derivations on Lie ideals of rings with involution. Some of our results extend other ones proven previously just for the action of generalized left derivations on the whole ring. Furthermore, we prove that every generalized Jordan left derivation on a 2-torsion free ∗-prime ring with involution is a generalized left derivation.
متن کاملOn Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کاملon jordan left derivations and generalized jordan left derivations of matrix rings
abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n 1, then any jordan left derivation on the ring tn(r) of all n×n up...
متن کاملA Note on Jordan∗− Derivations in Semiprime Rings with Involution
In this paper we prove the following result. Let R be a 6−torsion free semiprime ∗−ring and let D : R → R be an additive mapping satisfying the relation D(xyx) = D(x)y∗x∗ + xD(y)x∗ + xyD(x), for all pairs x, y ∈ R. In this case D is a Jordan ∗−derivation. Mathematics Subject Classification: 16W10, 39B05
متن کاملOn generalized left (alpha, beta)-derivations in rings
Let $R$ be a 2-torsion free ring and $U$ be a square closed Lie ideal of $R$. Suppose that $alpha, beta$ are automorphisms of $R$. An additive mapping $delta: R longrightarrow R$ is said to be a Jordan left $(alpha,beta)$-derivation of $R$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin R$. In this paper it is established that if $R$ admits an additive mapping $G : Rlongrigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2012
ISSN: 2391-4661
DOI: 10.1515/dema-2013-0420